
Resource Allocation in Cloud Datacenters
476/576 Class Project: Team 06

Rand Perrin Black, Sean Bullis, Kira Kopcho, Morel Kopcho
Oregon State University, Corvallis, OR, USA, blackra,bulliss,kopchok,kopchom@oregonstate.edu

Abstract—With the growing demand for access to cloud
resources, the problem of allocating resources to clients
in real-time grows exponentially difficult. To manage
the growth of demand on cloud service providers more
efficient methods must be developed to ensure the quality
of service expectations for clients are met. Specifically,
three groups of algorithms have emerged as solutions to
this problem space; namely the heuristic, meta-heuristic,
and hybrid algorithms. There are many algorithms in
each of these categories with different strengths and
weaknesses in solving particular aspects of the allocation
problem. This paper discusses the challenges faced in
allocating resources to clients in large cloud data centers,
explores each of the algorithm groups, and highlights an
algorithm from each group used to tackle these problems.
In addition, the implementation of two algorithms and the
results of simulations of each of the implementations are
discussed.

I Introduction: Motivation and Objectives
Cloud computing refers to a paradigm where a cloud
service provider (CSP) offers a pool of configurable
computing resources. End-users interact with these re-
sources by invoking and releasing them on a pay-
per-use basis. One of the key advantages of cloud
computing is that users are not required to have in-
depth knowledge of the underlying virtual or physical
machines, nor do they need to manage tasks intricately.
Additionally, CSPs typically guarantee performance to
end-users through service level agreements (SLAs),
ensuring reliability and quality of service. This model
allows for scalability, flexibility, and cost-effectiveness
in deploying and managing applications and services.

The motivation for improving resource allocation
in cloud computing arises from several key factors.
Firstly, as cloud computing becomes increasingly preva-
lent, the associated power and thermal costs escalate
exponentially. This necessitates efficient resource al-
location strategies to minimize operational expenses
while maintaining optimal performance. Secondly, the
unpredictable fluctuations in demand pose challenges
for optimizing resource utilization. CSPs must contend
with varying workloads and strive to allocate resources
effectively to meet dynamic demands. Moreover, CSPs

face the delicate task of balancing the imperative to
enhance cost efficiency and reduce energy consumption
with the obligation to fulfill end-users’ expectations and
adhere to SLAs. Therefore, developing robust resource
allocation mechanisms is crucial for ensuring reliable
and sustainable cloud computing infrastructures.

II Background and Fundamental Concepts
A. Cloud Computing Architecture
Cloud computing takes on different forms. The three-
tier architecture of cloud computing is one of the most
common architectures. It encompasses distinct layers,
each serving a specific function in the delivery of
services and management of data. At the presentation
tier, often referred to as the front end, users interact
directly with the system, accessing the interface and
visual elements that facilitate interaction with the ap-
plication. This tier encapsulates what users see and
interact with, shaping their experience and providing
a means to input commands or retrieve information.
Moving to the application tier, also known as the
logic tier, this layer serves as the engine behind the
scenes where the processing of information occurs.
Here, algorithms, business logic, and data processing
operations take place, orchestrating the functionality
and behavior of the application based on user inputs
and system requirements. Finally, at the data tier, or
the back end, lies the infrastructure responsible for
storing and managing data. This tier houses databases,
file systems, and other storage mechanisms where data
is persistently stored, organized, and retrieved as needed
by the application. It serves as the foundation upon
which the application operates.

In addition to the traditional three-tier architec-
ture, there are several other common architectures and
topologies present in the realm of cloud computing,
each tailored to address specific needs:

• Microservices Architecture: Microservices archi-
tecture is a design approach where applications
are broken down into smaller, loosely coupled
services, each responsible for specific functionali-
ties. These services are independently deployable
and scalable. Microservices architecture promotes

1



modularization, enabling teams to develop, deploy,
and update components independently.

• Hybrid/Multi Cloud Topology: Hybrid or multi-
cloud topology involves the use of multiple cloud
service providers or cloud environments, such as
public, private, or hybrid clouds, to host an orga-
nization’s workload. This approach offers redun-
dancy, and scalability at the cost of more points of
attack from a security standpoint.

• Edge Computing Topology: Edge computing
topology decentralizes computation and data stor-
age by placing resources closer to the point of data
generation or consumption, typically at the edge of
the network. This enables low-latency processing,
real-time analytics, and bandwidth optimization
for applications that require rapid response times
or operate in bandwidth-constrained environments.
Edge computing is particularly relevant for appli-
cations where minimizing latency and enhancing
user experience are paramount.

B. Service Models
Beyond the topology of the system is the services
being provided by those systems. CSPs offer a spectrum
of services categorized primarily into Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). These service categories
represent different levels of abstraction and manage-
ment responsibilities, catering to varying needs and
preferences of users:

• Infrastructure as a Service: IaaS provides users
with virtualized computing resources over the
internet. Users have access to scalable and on-
demand infrastructure components, including vir-
tual machines, storage, and networking resources.
With IaaS, users retain control over the operat-
ing systems, applications, and data, allowing for
greater flexibility and customization.

• Platform as a Service: PaaS offers a higher level of
abstraction by providing a platform for developing,
deploying, and managing applications without the
complexity of underlying infrastructure manage-
ment. PaaS offerings typically include develop-
ment tools, middleware, databases, and runtime
environments, enabling developers to focus on
application development rather than infrastructure
management.

• Software as a Service: SaaS delivers software
applications over the internet, eliminating the need
for users to install, maintain, or manage the
software locally. Users access SaaS applications
through web browsers, and the software is typ-

ically hosted and maintained by the CSP. SaaS
offerings cover a wide range of applications, in-
cluding productivity tools, customer relationship
management systems, and collaboration platforms.

Before moving into specific instances of these ser-
vices, a framework for determining quality of a cloud
computing system is needed. The evaluation of cloud
computing systems involves the assessment of various
metrics to gauge performance, efficiency, and overall
effectiveness. These evaluation metrics provide valuable
insights into the functionality and capabilities of cloud-
based infrastructures, enabling stakeholders to make
informed decisions regarding deployment, optimization,
and resource allocation. Evaluation metrics can be
broadly categorized into objective-based metrics and
performance metrics, each serving distinct purposes in
evaluating different aspects of cloud computing sys-
tems. Objective-based metrics focus on assessing spe-
cific objectives or criteria to ensure that cloud services
meet predefined goals and requirements. Performance
metrics, on the other hand, delve into quantifying the
performance characteristics of cloud systems to mea-
sure the system’s operational efficiency and responsive-
ness to user demands. Objective-based metrics often
include the following:

• Cost is a metric that applies to both parties in-
volved. While service providers aim to maximize
profit, end-users strive to minimize expenses. Ef-
fective cost management strategies are imperative
for ensuring the financial viability and competi-
tiveness of cloud services.

• Makespan refers to the total time it takes for a
given set of tasks to complete. This is most heavily
influenced by the scheduling algorithm used and is
best minimized by the decided upon algorithm in
the context of the tasks required to run.

• Scalability is the metric that measures the ability
of the system to increase in size along with the
number of end-users or tasks. This is a limiting
factor for any kind of service provider.

• Load balance is the distribution of tasks as evenly
as possible across available resources, ensuring
optimal resource utilization and preventing bottle-
necks or overloads in the system.

• Reliability assesses the likelihood that a given task
can be completed without failure. This metric is of
higher priority in the context of quality of service.

By considering these objective-based metrics, an end
user can adequately determine if a service is correct for
their needs, and stakeholders are able to determine if
their service is of a competitive quality to others in the

2



market.

III Research Challenges
This section addresses the following challenges in con-
text of research allocation in cloud computing. Note
that these issues are not independent from each other
and are deeply coupled increasing the difficulty of
addressing one set of challenges without complicating
or perturbing the issues faced in the other challenges.

• Real-time Scheduling: Real-time scheduling is
a problem because as the size of the problem
increases the complexity of the problem increases
exponentially [1]. Thus, one must predict when
a solution must be determined and predict the
conditions of the system when that solution is
needed to provide a fast and accurate result since
a real-time solution at scale is unfeasible. Many
users can request resources and terminate access
at any time which makes this a highly dynamic
system therefore good prediction models must be
developed.

• Quality of Service Balancing: Cloud computing
gives any client access to cloud resources if they
are willing to pay. It is not guaranteed that each
client is going to have the same metrics for what
they consider quality service, therefore each client
will need to have their quality of service metrics
optimized as not to breach their service level agree-
ment. These optimizations may be aimed at make-
span, cost, energy use, reliability, or load-balance.
This means that a one-sized-fits-all algorithm for
resource allocation will not match each individual
client demands.

• Scalability: As more users globally demand access
to cloud network resources the complexity of the
problem increases exponentially. The adoption of
heuristic, meta-heuristic, and hybrid algorithms
marks a shift from finding the best solution to
finding a quasi-optimal solution in a reasonable
amount of time. As the scale of resource allocation
problems increase it is not clear that these solutions
will remain viable, or whether the current topology
and heirarchy of cloud data centers will be optimal.
Considerations must also be made toward idle
cloud resources and energy use as larger client
loads will require more idle servers to buffer
against potential surges in workload resulting in
wasted power and increased carbon emissions.

• Load Balancing Resource utilization must be
managed to ensure clients are not experiencing
performance bottlenecks that hurt their quality of
service, and that resources aren’t sitting idle wast-

ing energy and increasing the cost per unit work.
With distributed systems all over the world and
automated initialization and allocation of virtual
machines the tracking of these resources becomes
massively important. Ideally, system resources
will be near maximum utilization without over-
utilization but keeping them there with a dynamic
workload is difficult especially when implementing
solutions that are not inherently optimal including
heuristic and meta-heurstic algorithms which aim
to produce quasi-optimal solutions.

• Energy Efficiency When responding to client re-
quests in real-time having resources already avail-
able is incredibly important, but each idle system
waiting to be used wastes power and creates carbon
emissions for zero accomplished work [2]. Chal-
lenges arise in optimizing the amount of available
resources while minimizing non-utilized resources.
Because of this, predictive models must be used to
predict the potential incoming workload to ensure
that just enough resources are available to handle
the load, while a recovery system robust enough
to quickly handle miss predictions to reduce QoS
impact on clients.

IV Advances on the State-of-the Art: Solution
Approaches

Resource allocation and task scheduling in the cloud
is considered an NP-Hard problem, meaning it is both
hard to solve the problem and hard to verify the solution
of the problem. NP-hard problems increase complexity
exponentially as the problem size increases.

Numerous optimization algorithms have been applied
to the problem of resource allocation in the cloud. We
explore three different categories of these optimization
algorithms- Heuristic algorithms, Meta-heuristic Algo-
rithms, and Hybrid Algorithms. Each algorithm has its
strengths and weaknesses depending on what’s being
optimized and the problem size. This section will give
a brief explanation of what each algorithm category is
and an exploration of different algorithms within that
category and their applications to resource allocation.

A. Heuristic Algorithms
Rather than an exhaustive search of the problem space
for an optimal solution, heuristic algorithms aim to
provide an approximate best solution within cost and
timeframe constraints. They are derived from past per-
formance information about the system that they are
implemented on, and attempt to capture the relationship
between the metrics being optimized, hardware utiliza-
tion, and user workload patterns [3].

3



The advantages of heuristic algorithms include that
they are able to run faster than traditional search al-
gorithms, relatively simple to implement, and tend to
be well-suited to online task scheduling problems [3].
Unfortunately, heuristic algorithms tend to be expensive
in terms of proccessing time and storage cost. Fur-
thermore, their performance weakens when there aren’t
many previous data to use, or the previous data do not
follow a particular distribution [4].

In [5], the authors proposed an algorithm to mini-
mize energy consumption and makespan in multi-cloud,
heterogeneous networks. The algorithm, Energy-aware
Task Allocation in Multi-Cloud Networks (ETAMCN),
operates by first calculating the Expected Time to
Completion (ETC) for each VM to find a set VMs that
can accomodate the incoming task, then calculates the
Energy Consumption (EC) of these VMs to find the one
that will minimize energy consumption. ETAMCN was
found to perform comparatively against Cloud Z-Score
Normalization (CZSN) and Multi-Objective Scheduling
with Fuzzy Resource utilization (FR-MOS) in terms of
makespan; in terms of energy consumption ETAMCN
outperformed CZSN by more than 6% and FR-MOS by
approximately 3%.

In [6], the authors utilize game theory and inequal-
ity theory to propose the Static Mixed Nash Equi-
librium (SM-NE) algorithm. SM-NE operates by al-
lowing devices in fog computing networks to allocate
tasks among nearby devices and the edge cloud to
improve average completion time. When compared to
the Myopic Best Response (MBR) algorithm, SM-NE
was found to perform similarly in terms of perfor-
mance gain. However, SM-NE requires less signalling
overhead, as it only needs average system parameters,
whereas MBR requires global knowledge of the system
state.

B. Meta-Heuristic Algorithms
Meta-heuristic algorithms offer a versatile approach
to solving complex optimization problems that lack
clear, deterministic solutions. Unlike traditional
heuristic methods, meta-heuristic algorithms do not
rely on specific problem-solving strategies tailored
to a particular domain. Instead, they operate at a
higher level, employing general-purpose techniques to
explore and navigate vast solution spaces in search of
optimal or near-optimal solutions. These algorithms
often involve exhaustive search processes, where
they iteratively evaluate numerous potential solutions
from large data pools to identify the most promising
candidates. Commonly, meta-heuristic algorithms draw
inspiration from natural phenomena or processes,

such as evolutionary algorithms, simulated annealing,
genetic algorithms, ant colony optimization, and
particle swarm optimization, among others.

Advantages:
• Exact Solutions: Meta-heuristic algorithms have

the capability to provide exact or near-exact solu-
tions to complex optimization problems, making
them suitable for scenarios where precision is
paramount.

• Handling Large Solution Spaces: These algorithms
excel at processing large or complex solution
spaces, allowing them to effectively explore a
wide range of possibilities and identify optimal
solutions.

Drawbacks:
• Time-Consuming: Meta-heuristic algorithms often

require a significant amount of time to converge
towards optimal solutions, especially when dealing
with complex or high-dimensional problem spaces.
The iterative nature of these algorithms may lead
to prolonged computation times.

• Resource Intensive: Due to their exhaustive search
processes and iterative nature, meta-heuristic algo-
rithms can be computationally intensive, demand-
ing substantial processing resources to execute
efficiently.

An example of a meta-heuristic algorithm is the Ant
Colony Algorithm, which draws inspiration from the
foraging behavior of ant colonies. The Ant Colony
Algorithm emulates the foraging pattern observed in
natural ant colonies, where ants explore their environ-
ment to locate food sources and communicate with each
other through pheromone trails. ants traversing through
a path, deposit a ”pheromone” along the way. The
amount of pheromone deposited on a path corresponds
to the quality or desirability of that path. Ants tend to
follow paths with higher concentrations of pheromones,
as these paths are perceived as more favorable or
promising. Over time, paths with higher pheromone
levels attract more ants, reinforcing their attractive-
ness and increasing the likelihood of subsequent ants
choosing those paths. Through repeated iterations, the
Ant Colony Algorithm optimizes the search process,
gradually converging towards a solution by effectively
exploiting the collective intelligence and decentralized
decision-making of an ant colony.

C. Hybrid Algorithms
Hybrid algorithms, by their namesake, are a combina-
tion of two or more algorithms to optimize a given
objective (or objectives). Hybrid algorithms can be

4



a combination of meta-heuristic and heuristic algo-
rithms or a combination of two or more meta-heuristic
algorithms. In the literature surveyed about hybrid
algorithms applied to resource and task scheduling,
the hybrid algorithms used most commonly combined
two or more meta-heuristic algorithms. The goal of
hybridizing algorithms is to address shortcomings in
individual algorithms such as low convergence or slow
search speed. [7]

Of the hybrid algorithms studied- the most common
hybrids were hybrids of the Genetic Algorithm, hybrids
of the Particle Swarm Optimization (PSO) algorithm,
and hybrids of the Ant Colony Optimization algorithm.
An in-depth description of the Genetic Algorithm and
the Particle Swarm Optimization algorithm can be
found in VI-A.

In [8] a hybrid of PSO and the Artificial Bee Colony
(ABC) algorithm was proposed to optimize the energy
consumption of cloud data centers while not violating
the service-license agreements of the end users. The
ABC algorithm is based on the foraging behaviors
of bees while PSO is based on swarm behaviors.
ABC-PSO addresses the shortcomings of PSO with
getting stuck in local optima (weaker exploration) and
ABC’s issue with having a weaker global search ability
(weaker exploitation). The algorithm outperformed ba-
sic PSO and ABC in terms of energy consumption and
throughput but did worse in terms of total execution
time.

In [9] a hybrid of an improved max-min scheduler
was combined with the ACO algorithm to minimize
total makespan. Max-min schedulers prioritize large
tasks over smaller tasks for scheduling. The improved
variant of min-max is optimized based on the execution
time of tasks rather than the completion time. In the
ACO portion of the algorithm, the length of the paths
is based on the execution time. The resulting task with
the max execution time is scheduled to a resource (VM
or Host) with an overall minimum completion time.
Both the processing time and completion cost over the
original improved Max-Min algorithm.

In [10] a hybrid of the Genetic Algorithm and an
Energy-Conscious Scheduling model. The goal is to
optimize makespan and energy consumption. The Ge-
netic Algorithm prepares the sequences of tasks based
on their priority, while ECS is used to assign tasks to
processors. The fitness function of the genetic algorithm
is based on energy consumption. The hybrid GAECS
algorithm outperformed standard PSO and the ABC al-
gorithm in terms of makespan and energy consumption.

Overall hybrid algorithms boast the ability to be
efficiently adapted to multiple objectives and address

issues that are present in non-hybrid meta-heuristic and
heuristic algorithms. The downside of these hybrids
however is they usually take a longer time to execute
as and their computational complexity increases due to
increased parameters to tune.

TABLE I
Comparison of Task Scheduling Algorithms

Algorithm Category Metric(s)
Optimized

Algorithms
Com-
pared

Results

ETAMCN Heuristic
Energy con-
sumption,
makespan

SZCN,
FR-MOS

Outperformed
in terms of
energy con-
sumption

SN-ME Heuristic
Average
completion
time

MBR

Similar
perfor-
mance, less
signalling
overhead

PSO-
ABC Hybrid Energy con-

sumption
PSO,
ABC

Outperformed
in terms of
energy
consump-
tion and
throughput

ACO-
Max-Min Hybrid Makespan Max-Min

Outperformed
in terms of
processing
time and
completion
cost

GAECS Hybrid
Energy con-
sumption,
makespan

PSO,
ABC

Outperformed
in terms of
makespan
and energy
consump-
tion

V Unsolved Technical Challenges
Despite current research efforts in the area of resource
allocation for cloud computing there are unsolved issues
to be addressed. This section will discuss those issues
as mentioned in literature.

• System Profiling: Currently, the way system per-
formance is determined is through measuring met-
rics to extrapolate where a system bottleneck might
be. This is important because cloud computing is
ultimately a service in which an expectation of ser-
vice quality is to be maintained. As distributed sys-
tems grow larger determining system performance
through metrics becomes more vague and doesn’t
address the underlying problem of the system or
how to improve it [11]. More fine-grained details
of application and infrastructure performance must
be obtained, but there exists a lack of relevant
simulated streaming workloads required to charac-

5



terize how the fine grained details can be adjusted
in order to tune system performance.

• Task Consolidation: Cloud computing networks
can service a variety of different tasks from clients.
These tasks will have different resource access
patterns. Some applications resource access pat-
terns may be more well suited to be paired with
other types of access patterns such that resource
contention for similarly required resources is min-
imized. Currently, there is no comprehensive re-
search on what types of tasks can be paired with
other types of tasks [4]. Tasks might include video
streaming, graphics processing, data processing,
etc. By optimally pairing tasks together better
system performance can be achieved without ad-
ditional infrastructure.

• Resource-aware Scheduling: It is a common
misunderstanding that a system with some level
of hardware resources will have those hardware
resources available to provision to clients at all
times. In reality, there may be background pro-
cesses, system updates, or other overhead on
the servers that reduce the available resources to
clients. Without taking in the dynamic resource
availability to clients, a system is prone to over-
utilization and a degradation of performance will
occur [11]. Resource-aware scheduling will allow
for optimal task scheduling in the face of changing
availability of resources. Specifically, when long-
term tasks are running and overhead processes
begin to run a remapping of tasks throughout the
distributed network can occur to keep each task
running smoothly.

• Carbon Emission Management: Various forms
of green energy in the forms of wind, solar,
water, and biomass are becoming more preva-
lent. Shifting task scheduling toward prioritizing
resources running on servers powered by green
energy will reduce the carbon footprint of the
cloud data centers [11]. Predictive methods to
determine available green energy clusters must
be developed. Additionally, energy saving tech-
niques are generally in conflict with QoS goals
such as make-span and cost-efficiency as tasks
may be allocated to clusters farther away or with
fewer active nodes. Models must be developed to
compare scheduling algorithms to determine the
optimization of meeting service level agreements
while minimizing usage of traditional fossil fuel
based energy [11].

VI Case Study: Implementation and Evaluation
A. The Studied Techniques
For the implementation portion of the project, we
chose to implement two meta-heuristic algorithms.
As discussed earlier in this paper, meta-heuristic
algorithms aim to iterate over a particular search area
until an optimal solution is found. In the following
section we will explore in depth the Particle Swarm
Optimization (PSO) algorithm and the Genetic
Algorithm and their applications to task scheduling.

1) Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a population-
based swarm-intelligence algorithm originally proposed
by Kennedy and Eberhart in [12] in 1995. Originally
tested on training neural network weights as an alter-
native to gradient descent, PSO has been applied as
a method of solving numerous optimization problems-
including the problem of task scheduling. As its name
implies, PSO operates by using a swarm of particles to
explore a given search space and obtain an optimum
solution. Each particle’s position in the search space
represents a potential solution to the problem. These
positions are randomly determined at initialization. At
each generation of the algorithm, the position and
velocity of the particle are updated based on the local
and global optimum. Local optimum refers to the saved
best position or ”personal best” solution of an individual
particle while global optimum refers to the best solution
in the entire swarm [13]. Every iteration of PSO drives
all particles in the swarm to converge around the global
best solution, which is considered the optimal solution
to the problem.

Implementation-wise, the basic PSO algorithm can
be broken down into 4 main steps: 1) Evaluate the
fitness of each particle, 2) Update the particle’s velocity
based on the global and local optimum, 3) Update the
particle’s position based on the applied velocity, 4)
Update the global and local optimum based on each
particle’s new position. This process is repeated until
a certain number of iterations are met or the global
optimum does not change for multiple iterations [14].
Fig 1 presents a basic flowchart that shows the flow of
the PSO algorithm.

The fitness and evaluation depend on which objective
is trying to be optimized. In the area of task scheduling
this can be makespan, execution time, cost, bandwidth,
or energy efficiency. Each particle’s fitness is evaluated
using a fitness function, which determines how close
the particle is to the best solution in the search space.
The fitness function is the objective function of what
needs to be optimized. For instance, if the goal was

6



Fig. 1: Simple framework flowchart of the Particle
Swarm algorithm from [14].

to optimize makespan then the fitness function would
optimize the execution time of tasks as in [15]. The
problem of task scheduling has been modeled as a
single-objective and a multi-objective problem. Numer-
ous different variants of the PSO algorithm have been
applied to this problem, each meant to improve the base
PSO algorithm to fit various problems [16].

Some of the variants of PSO that have been seen in
the literature for task-scheduling are:

• Jumping PSO A variant of PSO that deals with a
discrete solution space rather than continuous. The
traditional model of applying velocity particles
only works for continuous solutions. Instead, JPSO
makes particles randomly ”jump” to new locations
based on current and future values of the particle’s
position.

• Modified PSO Variants of PSO that address cer-
tain shortcomings with the base algorithm such
as getting trapped in local optima or long conver-
gence times. These algorithms modify the structure
of basic PSO to overcome its shortcomings.

• Hybrid PSO As mentioned earlier in the paper,
PSO is often combined with other algorithms to
improve its functionality and overcome drawbacks.
Most often PSO gets combined with other meta-
heuristic algorithms such as Ant Colony Optimiza-
tion and the Genetic Algorithm.

PSO boasts many advantages to other meta-heuristic
algorithms, the most prominent being its simplicity
to implement. As with other swarm-intelligence-
based algorithms- PSO has a fast search time and
relatively low computational cost. However, while
its simplicity gives it some advantages- it suffers
from slow convergence times, especially with higher
dimensional search spaces or more complex datasets.

It also famously has an issue with getting trapped
in local optima rather than converging on the global
best solution. [17]. This is why basic PSO is often
combined with other algorithms or modified to address
these issues.

2) Genetic Algorithm
The Genetic Algorithm (GA) builds upon other evolu-
tionary computation algorithms, spanning back as far
as the 1960s. This includes Rechenberg’s ”evolution
strategies” in 1965, as well as the work of Box and
Friedman in the 1950s, Bledsoe, Bremermann, and
Reed et al. in the 1960s, and numerous evolutionary
biologists using computers to simulate evolution in
controlled experiments [18].

GAs were invented by John Holland in the 1960s and
developed by him and his students and colleagues at the
University of Michigan throughout the 1970s. Contrary
to prior evolutionary algorithms, Holland wanted to
formally study the phenomenon of adaptation within
nature, and implement such mechanisms into computer
systems [18].

GAs aim to search the solution space by moving
from a population of chromosomes (candidate so-
lutions) to an optimal population via a process of
”natural selection” that uses genetics-inspired opera-
tors of crossover, mutation, and inversion. Selection
chooses chromosomes in the population to reproduce,
with chromosomes with higher fitness values producing
more offspring on average than less fit ones. Crossover
exchanges portions of two chromosomes, roughly mim-
icking biological recombination between two single-
chromosome organisms; mutation randomly changes
the values of some locations in the chromosome; and
inversion reverses the order of a contiguous section of
the chromosome [18].

Fig. 2: Simple framework flowchart of the Genetic
Algorithm, adapted from [19].

7



Figure 2 presents a high-level overview of GAs.
The initial population is often created with random so-
lutions/chromosomes. Subsequent generations are pro-
duced as a result of the cycle of determining fitness, se-
lecting chromosomes, crossing over two chromosomes,
and then performing mutation and/or inversion.

A fitness function is used to determine the quality
of the individuals in the population with regard to an
optimization objective. The fitness function will differ
depending on the context of the optimization problem;
in the context of resource allocation, it may be based
on cost, energy usage, makespan, or execution time,
among other metrics [20].

The selector is responsible for determining which
individuals in the current generation will produce off-
spring. Many selection procedures perform fitness-
proportionate selection, meaning that individuals with
higher fitness values are selected with higher probabil-
ity. However, there also exist non-parametric selection
procedures that only examine the rank ordering of
individuals’ fitness values [21].

Crossover is the most noteworthy operation in GAs.
Individual components or ”genes” are split and recom-
bined between two parent chromosomes. These parents
may be swapped at a single point, between two points,
or independently for each gene [21].

Mutation is used to prevent premature convergence
of the GA. After several generations, it is possible for
the selector to drive the values of particular genes to a
single value. The role of mutation, then, is to prevent the
loss of a given value of a gene or ”allele”. Depending
on the type of mutation procedure chosen, genes in the
chromosome will have their value flipped, or two genes
will swap places with a set probability [22].

Beyond the standard genetic algorithm, variants of
GA have been developed to be more exploitative in
their search. Some of these variants include:

• Elitism During the selection phase, the fittest
individuals are directly injected into the next gen-
eration, resulting in ”better” solutions persisting
across generations. [21].

• Steady-State GA Rather than creating a new gen-
eration all at once, this variant iteratively generates
a few offspring, assesses their fitness, and then add
them to the population by culling an equal number
of existing individuals [21].

• Tree-Style Genetic Programming Genetic pro-
gramming (GP) uses meta-heuristics to find highly
fit computer programs; in this case using trees as
its representation. During its crossover phase, the
variant of GA used crosses the selected parents

with 90% probability, otherwise it selects and di-
rectly copies one parent to the next generation [21].

These variants, and GAs as a whole, provide a
number of advantages. Namely, they are conceptually
simple, requiring no gradient information to operate;
they are broadly applicable, as they can be applied
to any problem that can be formulated as a function
optimization problem; and they are robust to dynamic
changes in the environment, as in most cases the
population need not be reinitialized as the environ-
ment changes [23]. However, GAs often suffer from
premature convergence, meaning that eventually the
GA contrains the population to copies of the same
individual [21].

B. Evaluation and Analysis
In our implementation of PSO and the Genetic Algo-
rithm for task scheduling, we chose to use CloudSim.
CloudSim is a free, open-source tool that allows users
to simulate a data center environment. It provides a
solution for studying processes in the cloud without
having to gain access to actual hardware or requiring
individuals to write their simulation engine. There are
other simulators such as MATLAB and NS3/NS2-based
simulators such as GreenCloud - however, CloudSim is
one of the most complete and most well-documented
of the simulators presented in the papers we surveyed.
CloudSim is developed by the CLOUDS Lab at the
University of Melbourne. For our project, we chose to
use CloudSim version 3.0.3 since most of the tutorials
are geared toward that specific version. Within the
CloudSim library are numerous example codes show-
ing users how to properly set up a data center with
certain parameters. We utilized these example codes as
a framework to build our implementations.

A quick explanation of some of the terminology
associated with CloudSim:

• Cloudlet A model of a task in the cloud, param-
eterized by computational requirements such as
length, processing units required to run the task,
and resource utilization.

• VM A model of a Virtual Machine that is con-
trolled by the data center host. It has parameters
such as memory, processor cores, storage size, and
a resource scheduling policy to handle cloudlets.

• Host A model of the actual hardware/physical
resource that VMs and Cloudlets are executed on.
Its parameters are available memory, processing
cores, storage, and an allocation policy for sharing
memory, processing power, and bandwidth among
VMs. [24]

The most important user-expanded class in CloudSim

8



is the data center broker. The broker is responsible for
mapping Cloudlets to available VMs- i.e. it is what
does the task scheduling and resource assignment in
the simulation. By default CloudSim uses First-Come-
First-Serve (FCFS) for scheduling VMs to Cloudlets-
however, this produces poor results when the number
of Cloudlets is large. We extended the broker class to
implement the PSO and GA respectively to schedule
tasks to VMs.

We chose to keep the parameters of the Host, VMs,
and Cloudlets common among our simulations so we
could compare the algorithms as directly as possible.
We used only 1 host to store our VMs and gave it
64 cores of processing power and a total of 2,356,230
MIPS. This is based on the specs for a Ryzen Thread-
ripper 3900x processor. We also gave the host 640 GB
of RAM and 1 TB of storage. On the host, we run 5
separate VMs. Table II shows the simulation parameters
for each VM. Each VM had varied numbers of MIPS
to test how well each algorithm scheduled tasks across
VMs with non-uniform resources. All Cloudlets had 1
processing element and we randomly varied the length
(in MIPS) from 100 to 1000 to simulate the variability
of tasks submitted for processing in the cloud. We chose
to use 100, 500, 1000, 1500, and 2000 Cloudlets to
evaluate the ability of the algorithms to perform task
scheduling that optimizes makespan. Each algorithm
was run 3 times with each number of Cloudlets.

TABLE II
Virtual Machine Specifications

V1 V2 V3 V4 V5
RAM (MB) 512 512 512 512 512

Image Size (MB) 1000 1000 1000 1000 1000
CPU Cores 2 2 2 2 2

Bandwidth (MB/s) 1000 1000 1000 1000 1000
MIPS 500 100 1000 1500 2500

1) PSO Setup
We implemented a basic version of PSO that minimized
makespan based on the methods described in [15]
and [25]. The fitness function used calculates the pre-
dicted makespan of each cloudlet based on a matrix of
saved execution times for each combination of cloudlets
on each VM. The maximum finish time gets returned
as the fitness of each particle. For our final results, we
used a swarm size (number of particles) of 100 and an
iteration count of 1000. Originally we used 30 particles
and 10000 iterations, but the convergence rate was very
slow with those parameters and also they didn’t match
what was in the literature.

As discussed in [15], the cognitive and social co-
efficients to determine the velocity of a particle were

set to 2. The inertia weight was updated on every
iteration by taking the maximum inertia value minus the
current inertia value wi and dividing it by the number of
iterations. The equations used for updating the velocity
and position of the particle are shown below.

vi = wi ∗ vi + 2 ∗ r1(pbest − pcurr)

+2 ∗ r2(gbest − pcurr)

pi = pi + vi

Where pbest is the personal best position of a particle,
pcurr is the current position, gbest is the global optima
and r1 and r2 are random vectors.
2) GA Setup
We also implemented GA to minimize makespan, with
the fitness function used operating similarly to the
function used in the simulation of PSO. To maintain
consistency with the PSO simulation, the GA used a
population size of 100, and iterated for 1000 genera-
tions.

The GA implementation uses a roulette-wheel se-
lector, which is a fitness-proportional selector. The
selection probability P (i) is calculated using the fitness
value fi of individual i, with selecting n individuals
from a given population equivalent to playing n times
on the roulette wheel [26]. Equation 1 shows the
equation used to calculate selection probability.

P (i) =
fi∑N−1

j=0 fj
(1)

For the crossover procedure, we used uniform
crossover, as it is more exploitative than other crossover
procedures. Algorithm 1 provides an outline of the
uniform crossover algorithm [21].

Algorithm 1 Uniform Crossover
1: p← probability of swapping an index
2: v⃗ ← first vector ⟨v1, v2, . . . , vl⟩ to be crossed
3: w⃗ ← second vector ⟨w1, w2, . . . , wl⟩ to be crossed
4: for i from 1 to l do
5: if p ≥ random number chosen uniformly from

0.0 to 1.0 inclusive then
6: Swap the values of vi and wi

7: end if
8: end for
9: return v⃗ and w⃗

We used swap mutation for the mutation procedure,
which simply swaps two genes within the chromosome
with a fixed probability.

9



3) Results and Analysis
We compared the implementations on average
makespan, execution time, and throughput. In addition
to PSO and GA, we also tested CloudSim’s FCFS
algorithm as a baseline to compare against. The
following sections compare the results across each of
the metrics with the values graphed being the median
values across the three trials.

• Average Makespan Both PSO and GA vastly out-
performed FCFS, with GA having slightly lower
average makespans than PSO. At 100 cloudlets,
PSO and GA have average makespans of 350.45
seconds and 307.75 seconds respectively, which
are roughly a third of FCFS’ average makespan
of 1094.40 seconds. As the number of cloudlets
is increased up to 2000, this ratio becomes closer
to half of FCFS’ average makespan of 20384.44
seconds, as compared to PSO and GA with average
makespans of 12427.72 seconds and 10157.81
seconds respectively. Figure 3 graphs the average
makespan for each algorithm with a varying num-
ber of cloudlets.

Fig. 3: Comparison of average makespan by algorithm

• Execution Time The execution times for all three
algorithms increased exponentially with increasing
number of cloudlets. That being said, PSO and
GA again vastly outperformed FCFS. As with
average makespan, at the lower end of cloudlets
PSO and GA had execution times that were
roughly one-third of FCFS’ (35034.70 seconds
and 30764 seconds as opposed to 109430.22
seconds); at the upper end of cloudlets the
execution times were closer to one-half that of
FCFS (24843158.97 seconds and 20315418.97
seconds as opposed to 40768682.19 seconds).
Figure 4 graphs the execution time for each
algorithm against a varying number of cloudlets.

Fig. 4: Comparison of execution time by algorithm

• Throughput Once more, PSO and GA outper-
formed FCFS, maintaining much higher through-
put across all numbers of cloudlets. Interestingly,
the throughput for FCFS remained constant at
0.02. Throughput for PSO and GA starts compar-
atively high at 0.11 and 0.21 respectively, and de-
clines towards the throughput for FCFS, with 0.03
and 0.04 respectively at 2000 cloudlets. Figure 5
graphs the throughput for each algorithm across
varying numbers of cloudlets.

Fig. 5: Comparison of throughput by algorithm

VII Conclusion
We have discussed the challenges for resource alloca-
tion in cloud computing and motivated a discussion
on why this is an important problem to solve. Finding
real time solutions is too time expensive and infeasible
as the size of the problem grows. Heuristic, meta-
heuristic and hybrid algorithms are being explored to
reach quasi-optimal solutions in a much faster time.
Two such algorithms are the Genetic Algorithm (GA)
and the Particle Swarm Optimization (PSO), both of
which iterate on a set of randomized initial solutions
to converge to an optimal solution space, and both of
which are meta-heuristic.

10



PMO models a swarm of particles and uses position
and velocity parameters to select for solutions that are
better than the previous iterations, while de-selecting
for solutions that are worse. PMO is generally an easy
algorithm to implement and relatively low cost com-
putationally, but suffers from long convergence times
when the solution space is large. GA uses principles
from genetics to evolve generations that converge to
an optimal solution space. Genes are generated by
mapping resources to tasks and random chromosomes
are created by groups of randomized genes. Crosses and
mutations are applied by iterating over the chromosome
generations to select for the best solutions. GAs are
highly applicable to most any optimization problem and
robust to dynamic changes in the environment but suffer
from premature convergence, such that the algorithm
can get stuck in a non-optimal solution space when the
chromosome population becomes too similar.

Based on the simulation results, GA has the best
makespan time, with PSO being just slightly behind
that. In comparison, these are much faster than the first-
come first-serve (FCFS) approach which we compared
against as baseline. The throughput for GA was higher
at for smaller cloudlet counts but GA converged with
PSO for larger cloudlet counts > 2000. The degree of
imbalance for both GA and PSO was similar across the
range of 100 to 2000 cloudlets, and both performed
significantly better than (FCFS) at smaller cloudlet
counts, and performed slightly better at larger cloudlet
counts. As cloudlet count increases, the execution time
for GA was slightly better than PSO, both of which
were significantly better than FCFS.

Ultimately, both GA and PSO perform comparably
across cloudlet count, and both perform significantly
better than FCFS. Each have their own strengths and
weaknesses that tend to be problem specific, and hybrid
implementations of these algorithms can highlight the
strengths of each while mitigating the weaknesses. It
can be determined that heuristic, meta-heuristic, and
hybrid algorithms improve the system performance of
cloud computing in the context of resource allocation.
Looking forward, future work would include compar-
isons between a hybrid implementation of GA and PSO
in comparison against each of them individually.

VIII Group Member Contributions
• Kira Kopcho: Implemented PSO in CloudSim for

Cloudlet scheduling, Survey/Research of hybrid
algorithms, Introduction of CloudSim and discus-
sion of CloudSim parameters in VI-B, in-depth
discussion of PSO in VI-A, presentation of PSO
in implementation presentation.

• Morel Kopcho: Implemented GA in CloudSim,
presentation of implementation of GA in imple-
mentation presentation, survey/research of heuris-
tic algorithms in survey presentation and in IV,
in-depth discussion of GA in VI-A, graphs and
results in VI-B.

• Rand Black: Wrote introduction and background
sections. Researched/Surveyed meta-heuristic al-
gorithms. Researched and presented on founda-
tional cloud computing architectures and service
models.

• Sean Bullis: Wrote the abstract, research chal-
lenges, unsolved technical challenges, and conclu-
sions sections. Researched the genetic algorithm in
depth and presented on it.

References
[1] KSII Transactions on Internet and Information Systems,

vol. 14, no. 7, Jul. 2020. [Online]. Available: http:
//dx.doi.org/10.3837/tiis.2020.07.005

[2] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes,
“Energy-efficient resource allocation and provisioning
framework for cloud data centers,” IEEE Transactions
on Network and Service Management, vol. 12,
no. 3, pp. 377–391, Sep. 2015. [Online]. Available:
http://dx.doi.org/10.1109/TNSM.2015.2436408

[3] N. Chauhan, N. Kaur, K. S. Saini, S. Verma, A. Alabdulatif,
R. A. Khurma, M. Garcia-Arenas, and P. A. Castillo, “A sys-
tematic literature review on task allocation and performance
management techniques in cloud data center,” arXiv preprint
arXiv:2402.13135, 2024.

[4] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P.
Jayaraman, J. Kolodziej, P. Balaji, S. Zeadally, Q. M. Malluhi,
N. Tziritas, A. Vishnu, S. U. Khan, and A. Zomaya, “A
survey and taxonomy on energy efficient resource allocation
techniques for cloud computing systems,” Computing,
vol. 98, no. 7, p. 751â774, Jun. 2014. [Online]. Available:
http://dx.doi.org/10.1007/s00607-014-0407-8

[5] S. K. Mishra, S. Mishra, A. Alsayat, N. Z. Jhanjhi,
M. Humayun, K. S. Sahoo, and A. K. Luhach, “Energy-
Aware Task Allocation for Multi-Cloud Networks,” IEEE
Access, vol. 8, pp. 178 825–178 834, 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9205994/

[6] S. Jošilo and G. Dán, “Decentralized algorithm for random-
ized task allocation in fog computing systems,” IEEE/ACM
Transactions on Networking, vol. 27, no. 1, pp. 85–97, 2018.

[7] N. Arora and R. Banyal Kumar, “Hybrid scheduling algo-
rithms in cloud computing: a review,” International Journal
of Electrical and Computer Engineering, vol. 12, no. 1, pp.
880–895, 2022.

[8] J. Meshkati and Safi-Esfahani, “Energy-aware resource uti-
lization based on particle swarm optimization and artificial
bee colony algorithms in cloud computing,” The Journal of
Supercomputing, vol. 75, pp. 2455â–2496, 2019.

[9] N. S. Ghumman and R. Kaur, “Dynamic combination of
improved max-min and ant colony algorithm for load balanc-
ing in cloud system,” in 2015 6th International Conference
on Computing, Communication and Networking Technologies
(ICCCNT), 2015, pp. 1–5.

[10] P. Pirozmand, A. A. R. Hosseinbaldi, M. Farrokhzad,
S. Mirkamali, M. Sadeghilalimi, and A. Slowik, “Multi-

11



objective hybrid genetic algorithm for task scheduling problem
in cloud computing,” Neural Computing and Applications,
vol. 33, p. 13075â13088, 2021. [Online]. Available: https:
//link.springer.com/article/10.1007/s00521-021-06002-w

[11] X. Liu and R. Buyya, “Resource management and scheduling
in distributed stream processing systems: A taxonomy,
review, and future directions,” ACM Computing Surveys,
vol. 53, no. 3, p. 1â41, May 2020. [Online]. Available:
http://dx.doi.org/10.1145/3355399

[12] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in
Proceedings of ICNN’95 - International Conference on Neural
Networks, vol. 4, 1995, pp. 1942–1948.

[13] X. Hu, “PSO Tutorial,” accessed 2024-03-14. [Online].
Available: http://www.swarmintelligence.org/tutorials.php

[14] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung,
and Y. Li, “Cloud Computing Resource Scheduling and
a Survey of Its Evolutionary Approaches,” ACM Comput.
Surv., vol. 47, no. 4, pp. 1–33, 2015. [Online]. Available:
https://doi.org/10.1145/2788397

[15] H. S. Al-Olimat, M. Alam, R. Green, and J. K. Lee, “Cloudlet
scheduling with particle swarm optimization,” in 2015 Fifth
International Conference on Communication Systems and Net-
work Technologies, 2015, pp. 991–995.

[16] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki,
“A survey of PSO-based scheduling algorithms in
cloud computing,” Journal of Network and Systems
Management, vol. 25, no. 1, pp. 122–158, 2017.
[Online]. Available: https://oregonstate.idm.oclc.org/
login?url=https://www.proquest.com/scholarly-journals/
survey-pso-based-scheduling-algorithms-cloud/docview/
1860051769/se-2?accountid=13013

[17] A. G. Gad, “Particle swarm optimization algorithm and its
applications: A systemic review,” Archives of Computational
Methods in Engineering, vol. 29, pp. 2531–2561, Apr. 2022.
[Online]. Available: https://link.springer.com/article/10.1007/
s11831-021-09694-4#citeas

[18] M. Mitchell, An introduction to genetic algorithms, ser. Com-
plex adaptive systems. Cambridge, Mass: MIT Press, 1996.

[19] S. Kaur and A. Verma, “An Efficient Approach
to Genetic Algorithm for Task Scheduling in Cloud
Computing Environment,” International Journal of
Information Technology and Computer Science, vol. 4,
no. 10, pp. 74–79, Sep. 2012. [Online]. Available:
http://www.mecs-press.org/ijitcs/ijitcs-v4-n10/v4n10-9.html

[20] P. Kumar and A. Verma, “Independent task scheduling in
cloud computing by improved genetic algorithm,” Interna-
tional Journal of Advanced Research in Computer Science and
Software Engineering, vol. 2, no. 5, 2012.

[21] S. Luke, Essentials of metaheuristics: a set of undergraduate
lecture notes; Online Version 2.0, 2nd ed. S.l.: Lulu, 2013.

[22] D. Whitley, “A genetic algorithm tutorial,” Statistics and
computing, vol. 4, pp. 65–85, 1994.

[23] S. N. Sivanandam and S. N. Deepa, Introduction to genetic
algorithms. Berlin ; New York: Springer, 2007.

[24] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Software: Practice and
Experience, vol. 41, no. 1, pp. 23–50, 2011. [Online].
Available: http://www.buyya.com/papers/CloudSim2010.pdf

[25] Z. Yang, X. Qin, W. Li, and Y. Yang, “Optimized task
scheduling and resource allocation in cloud computing using
PSO based fitness function,” Information Technology Journal,
vol. 12, no. 23, pp. 7090–7095, 2013. [Online]. Available:
https://scialert.net/abstract/?doi=itj.2013.7090.7095

[26] F. Wilhelmstötter, “Jenetics Library User’s Manual 7.2,” URL:
http://jenetics. io, 2021.

12


